Definitionsmenge

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Die Definitionsmenge dieser Funktion X → Y ist {1, 2, 3}, in diesem Falle die ganze Grundmenge X.

In der Mathematik versteht man unter Definitionsmenge oder Definitionsbereich die Menge mit genau den Elementen, unter denen (je nach Zusammenhang) die Funktion definiert bzw. die Aussage erfüllbar ist. In der Schulmathematik wird die Definitionsmenge oft mit abgekürzt, manchmal wird das auch mit einem Doppelstrich geschrieben.

Definitionsbereich einer Funktion[Bearbeiten | Quelltext bearbeiten]

Eine Funktion ist eine spezielle Relation, die jedem Element der Definitionsmenge genau ein Element der Zielmenge zuweist. Die Definitionsmenge wird mit bezeichnet. Hat die Funktion einen anderen Namen als wie z. B. oder , dann wird der Definitionsbereich entsprechend mit oder bezeichnet.

Die Menge

aller Funktionswerte von heißt Bild- oder Wertemenge von und ist eine Teilmenge der Zielmenge.

Die Grundmenge und die Zielmenge einer Funktion sind wesentliche Teile ihrer Definition. Häufig werden aber die Grundmenge und die Zielmenge einer Funktion nicht mit angegeben, wenn die Funktion auf der maximal möglichen Definitionsmenge gemeint ist (die dann meist eine Teilmenge der reellen Zahlen oder komplexen Zahlen ist).

Zwei Funktionen mit gleicher funktionaler Abhängigkeit, aber verschiedenen Grundmengen oder verschiedenen Zielmengen, sind jedoch unterschiedliche Funktionen und können unterschiedliche Eigenschaften haben.

Beispiele[Bearbeiten | Quelltext bearbeiten]

Gegeben sei die Abbildung mit der Grundmenge und der Zielmenge . Dann gilt: ist eine Funktion mit und .

  1. Als Funktion (also mit Definitionsmenge und Zielmenge ) ist bijektiv, also sowohl surjektiv als auch injektiv.
  2. Als Funktion (also mit Definitionsmenge und Zielmenge ) ist injektiv, aber nicht surjektiv.
  3. Als Funktion (also mit Definitionsmenge und Zielmenge ) ist surjektiv, aber nicht injektiv.
  4. Als Funktion (also mit Definitionsmenge und Zielmenge ) ist weder surjektiv noch injektiv.

Einschränkung und Fortsetzung einer Funktion[Bearbeiten | Quelltext bearbeiten]

Sei eine Funktion und , . Die Funktion heißt Einschränkung von , wenn für alle gilt.[1] heißt in dieser Situation Erweiterung oder Fortsetzung von .[2]

Die Einschränkung wird oft als geschrieben. Diese Notation ist nicht völlig exakt, da die Menge nicht mit angegeben wird; in den interessanten Fällen wird aber meist gewählt.

Für eine Funktion und zwei gegebene Mengen , gibt es höchstens eine Einschränkung von ; diese existiert genau dann, wenn die Bildmenge Teilmenge von ist.[3]

Im Gegensatz zur Einschränkung einer Funktion ist die Fortsetzung nicht eindeutig.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Gegeben sei die Funktion

Mögliche Fortsetzungen auf den Definitionsbereich , also als Funktionen , sind beispielsweise sowohl

als auch

ist insofern eine „schönere“ Fortsetzung, als stetig ist, hingegen nicht. Dies ändert aber nichts daran, dass beide Funktionen korrekte Fortsetzungen sind, da eine eindeutige Fortsetzung in der Funktionsdefinition selbst nicht erhalten ist. Eindeutigkeit ergibt sich erst aus zusätzlichen Forderungen, wie eben Stetigkeit in diesem Beispiel, oder beispielsweise in der Forderung nach einer holomorphen Fortsetzung auf die komplexen Zahlen von einer Funktion, die zunächst nur auf einer Teilmenge der reellen Zahlen definiert ist.

Definitionsbereich einer Relation[Bearbeiten | Quelltext bearbeiten]

Unter dem Definitionsbereich der Relation mit

versteht man die Projektion von auf , also jene Teilmenge von Elementen der Quelle , die als erste Komponenten in Elementen vorkommen:[4]

Beispiel[Bearbeiten | Quelltext bearbeiten]

Gegeben sei die Relation mit

.

Da für reelle das Quadrat immer nichtnegativ (größer oder gleich null) ist und umgekehrt für jedes nichtnegative reelle mindestens eine reelle Zahl mit existiert, ist für diese Relation der Definitionsbereich die Menge der nichtnegativen reellen Zahlen: .

Definitionsbereich eines Terms[Bearbeiten | Quelltext bearbeiten]

Der Definitionsbereich eines Terms mit Variablen und den dazugehörigen Grundmengen ist die Menge aller n-Tupel , für , für die der Term in sinnvolle Werte übergeht.[2]

Beispiele[Bearbeiten | Quelltext bearbeiten]

Der Definitionsbereich des Terms in einer Variablen mit der Grundmenge ist , da der Bruch nur für einen von Null verschiedenen Wert des Nenners sinnvoll definiert ist.

Der Definitionsbereich des Terms in zwei Variablen mit der Grundmenge ist , da im reellen Fall die Wurzel nur für nichtnegative Werte sinnvoll definiert ist.

Definitionsbereich von Gleichungen und Ungleichungen[Bearbeiten | Quelltext bearbeiten]

Sind und Terme, so nennt man

eine Gleichung,

und

und ähnliche Ausdrücke nennt man Ungleichungen. Beim Lösen einer Gleichung bzw. Ungleichung sucht man jene Werte aus dem Grundbereich, für welche die Gleichung bzw. Ungleichung in eine wahre Aussage übergeht. Als Definitionsbereich bezeichnet man jene Teilmenge des Grundbereiches, für die alle in der Gleichung bzw. Ungleichung auftretenden Terme sinnvoll definiert sind, also die Durchschnittsmenge der Definitionsmenge von und .[5]

Insbesondere bei komplizierteren Gleichungen kann es vorkommen, dass beim Lösen der Ausgangsgleichung auf eine Gleichung umgeformt wird, die auch Lösungen enthält, die nicht im Definitionsbereich der Ausgangsgleichung enthalten sind. In einem solchen Fall muss also nach dem Lösen der Gleichung überprüft werden, ob die erhaltenen Lösungswerte tatsächlich im Definitionsbereich enthalten sind und gegebenenfalls einige Werte ausgeschieden werden.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Es sind die reellen Lösungen der Gleichung

gesucht. Da unter der Wurzel nur nichtnegative Werte stehen dürfen, ist der Definitionsbereich der Gleichung .

Quadrieren der Gleichung liefert

bzw.

.

Quadrieren ist keine Äquivalenzumformung, es gilt zwar , aber nicht , die umgeformte Gleichung kann also mehr Lösungen als die Ausgangsgleichung enthalten. Nochmaliges Quadrieren ergibt

bzw.

.

Diese Gleichung hat die beiden Lösungen und . Der Wert ist nicht im Definitionsbereich der Gleichung enthalten und ist somit keine Lösung; der Wert ergibt in die Ausgangsgleichung eingesetzt eine wahre Aussage und ist somit die einzige Lösung der Gleichung.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Edmund Hlawka, Christa Binder, Peter Schmitt: Grundbegriffe der Mathematik. Prugg Verlag, Wien 1979. ISBN 3-85385-038-3. S. 38 f, Definition 3.13.
  2. a b Walter Gellert, Herbert Kästner, Siegfried Neuber (Hrsg.): Lexikon der Mathematik. VEB Bibliographisches Institut Leipzig, 1979. S. 167, Funktion VII.
  3. Edmund Hlawka, Christa Binder, Peter Schmitt: Grundbegriffe der Mathematik. Prugg Verlag, Wien 1979. ISBN 3-85385-038-3. S. 39, Satz 3.13 und Satz 3.14.
  4. Edmund Hlawka, Christa Binder, Peter Schmitt: Grundbegriffe der Mathematik. Prugg Verlag, Wien 1979. ISBN 3-85385-038-3. S. 18.
  5. Walter Gellert, Herbert Kästner, Siegfried Neuber (Hrsg.): Lexikon der Mathematik, VEB Bibliographisches Institut Leipzig, 1979. S. 199, Gleichung.