Upper-atmospheric lightning

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Darkest tree (talk | contribs) at 17:07, 19 August 2011 (Performed merge from Transient luminous event to Upper-atmospheric lightning). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Representation of upper-atmospheric lightning and electrical-discharge phenomena

Upper-atmospheric lightning or upper-atmospheric discharge are terms sometimes used by researchers to refer to a family of short-lived electrical-breakdown phenomena that occur well above the altitudes of normal lightning and storm clouds. Upper-atmospheric lightning is believed to be electrically induced forms of optical fluorescence. The preferred usage is transient luminous event, because the various types of electrical-discharge phenomena in the upper atmosphere lack several characteristics of the more familiar tropospheric lightning. TLEs include red sprites, sprite halos, blue jets, gigantic jets, and elves.

Characteristics

There are several types of TLEs, the most common being sprites. Sprites are flashes of bright red light that occur above storm systems. C-sprites (short for "columniform sprites") is the name given to vertical columns of red light. C-sprites exhibiting tendrils are sometimes called carrot sprites. Other types of TLEs include gnomes, blue jets, gigantic jets, blue starters, and elves, the latter being the plural of "ELVE," a somewhat forced acronym for "e(mission of) l(ight and) v(ery low-frequency perturbations from) e(lectromagnetic pulse sources)". TLEs are secondary phenomena that occur in the upper atmosphere in association with underlying thunderstorm lightning.

TLEs generally last anywhere from less than a millisecond to more than 2 seconds. The first TLE was captured accidentally in a video recording in 1989. University of Minnesota researchers were waiting to record a rocket launch and pointed the camera at a distant thunderstorm. A TLE was later identified, appearing in only two frames of the film. TLEs have been captured by a variety of optical recording systems, with the total number of recorded events currently (early 2009) estimated at many tens-of-thousands. The global rate of TLE occurrence has been estimated from satellite (FORMOSAT-2) observations to be several million events per year.

History

In the 1920s, the Scottish physicist C.T.R. Wilson predicted that electrical breakdown should occur in the atmosphere high above large thunderstorms.[1] In ensuing decades, high altitude electrical discharges were reported by aircraft pilots and discounted by meteorologists until the first direct visual evidence was documented on July 6, 1989 by scientists from the University of Minnesota. Several years later, the optical signatures of these events were named 'sprites' by researchers at the University of Alaska to avoid inadvertently implying physical properties that were, at the time, still unknown. The terms red sprites and blue jets gained popularity after a video clip was circulated following an aircraft research campaign to study sprites in 1994.[2]

Sprites

First color image of a sprite, taken from an aircraft.

Sprites are large-scale electrical discharges which occur high above a thunderstorm cloud, or cumulonimbus, giving rise to a quite varied range of visual shapes. They are triggered by the discharges of positive lightning between the thundercloud and the ground.[3] The phenomena were named after the mischievous sprite (air spirit) Puck in William Shakespeare's A Midsummer Night's Dream [original research?]. They normally are colored reddish-orange or greenish-blue, with hanging tendrils below and arcing branches above. They can also be preceded by a reddish halo.[4] They often occur in clusters, lying 50 miles (80 km) to 90 miles (140 km) above the Earth's surface. Sprites were first photographed on July 6, 1989 by scientists from the University of Minnesota and have since been witnessed tens of thousands of times.[5] Sprites have been held responsible for otherwise unexplained accidents involving high altitude vehicular operations above thunderstorms.[6]

Jets

Blue jets

Blue jets differ from sprites in that they project from the top of the cumulonimbus above a thunderstorm, typically in a narrow cone, to the lowest levels of the ionosphere 40 to 50 km (25 to 30 miles) above the earth. In addition, whereas red sprites tend to be associated with significant lightning strikes, blue jets do not appear to be directly triggered by lightning (they do, however, appear to relate to strong hail activity in thunderstorms).[7] They are also brighter than sprites and, as implied by their name, are blue in color. The color is believed to be due to a set of blue and near-ultraviolet emission lines from neutral and ionized molecular nitrogen. They were first recorded on October 21, 1989, on a monochrome video of a thunderstorm on the horizon taken from the Space Shuttle as it passed over Australia. Blue jets occur much less frequently than sprites. By 2007, fewer than a hundred images had been obtained. The majority of these images, which include the first color imagery, are associated with a single thunderstorm studied by researchers from the University of Alaska. These were taken in a series of 1994 aircraft flights to study sprites.[8]

Blue starters

Blue starters were discovered on video from a night time research flight around thunderstorms [9] and appear to be "an upward moving luminous phenomenon closely related to blue jets."[10] They appear to be shorter and brighter than blue jets, reaching altitudes of only up to 20 km.[11] "Blue starters appear to be blue jets that never quite make it," according to Dr. Victor P. Pasko, associate professor of electrical engineering.[12]

Gigantic jets

On September 14, 2001, scientists at the Arecibo Observatory photographed a gigantic jet—double the height of those previously observed—reaching around 70 km (43 miles) into the atmosphere.[13] The jet was located above a thunderstorm over an ocean, and lasted under a second. The jet was initially observed to be traveling up at around 50,000 m/s in a way similar to a typical blue jet but then split in two and sped at 250,000 m/s [dubious ]to the ionosphere whence they spread out in a bright burst of light.

On July 22, 2002, five gigantic jets between 60 and 70 km (35 to 45 miles) in length were observed over the South China Sea from Taiwan, reported in Nature.[14][15] The jets lasted under a second, with shapes likened by the researchers to giant trees and carrots.

Elves

Elves often appear as a dim, flattened, expanding glow around 400 km (250 miles) in diameter that lasts for, typically, just one millisecond.[16] They occur in the ionosphere 100 km (60 miles) above the ground over thunderstorms. Their color was a puzzle for some time, but is now believed to be a red hue. Elves were first recorded on another shuttle mission, this time recorded off French Guiana on October 7, 1990.

Elves is a frivolous acronym for Emissions of Light and Very Low Frequency Perturbations from Electromagnetic Pulse Sources.[17] This refers to the process by which the light is generated; the excitation of nitrogen molecules due to electron collisions (the electrons possibly having been energized by the electromagnetic pulse caused by a discharge from an underlying thunderstorm).

See also

References

  1. ^ Earle R. Williams. "Sprites, Elves, and Glow Discharge Tubes".
  2. ^ Red Sprites & Blue Jets - 1994 video.
  3. ^ Boccippio, D. J.; Williams, ER; Heckman, SJ; Lyons, WA; Baker, IT; Boldi, R; et al. (1995). "Sprites, ELF Transients, and Positive Ground Strokes". Science. 269 (5227): 1088–1091. Bibcode:1995Sci...269.1088B. doi:10.1126/science.269.5227.1088. PMID 17755531. {{cite journal}}: Explicit use of et al. in: |first= (help); Unknown parameter |month= ignored (help)
  4. ^ Sterling D. Allen - Pure Energy Systems News (2005). "BLAM-O!! Power from Lightning". Pure Energy Systems. Retrieved September 24, 2007.
  5. ^ Walter A. Lyons and Michey D. Schmidt (2003). P1.39 The Discovery of Red Sprites as an Opportunity For Informal Science Education. American Meteorological Society. Retrieved on 2009-02-18.
  6. ^ STRATOCAT - Stratospheric balloons history and present. "Full report on the uncontrolled free fall of a stratospheric balloon payload provoked by a Sprite".
  7. ^ Fractal Models of Blue Jets, Blue Starters Show Similarity, Differences to Red Sprites
  8. ^ 'Red Sprites & Blue Jets - the video'[1], 'Blue Jets & Blue Starters - the video'[2].
  9. ^ Examples may be seen in the clip 'Blue Jets & Blue Starters - the video' [3].
  10. ^ THE ROLE OF THE SPACE SHUTTLE VIDEOTAPES IN THE DISCOVERY OF SPRITES, JETS AND ELVES
  11. ^ Blue jets
  12. ^ Fractal models of blue jets, blue starters show similarity, differences to red sprites
  13. ^ V.P. Pasko, M.A. Stanley, J.D. Matthews, U.S. Inan, and T.G. Wood (March 14, 2002) "Electrical discharge from a thundercloud top to the lower ionosphere," Nature, vol. 416, pages 152-154.
  14. ^ http://sprite.phys.ncku.edu.tw/new/news/0626_presss/nature01759_r.pdf
  15. ^ Giant jets caught on camera
  16. ^ ELVES, a primer: Ionospheric Heating By the Electromagnetic Pulses from Lightning
  17. ^ The Free Dictionary - ELVES

External links